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First Passage Time Densities for Random Walk Spans 
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A general expression is derived for the Laplace transform of the probability den- 
sity of the first passage time for the span of a symmetric continuous-time ran- 
dom walk to reach level S. We show that when the mean time between steps is 
finite, the mean first passage time to S is proportional to S 2. When the pausing 
time density is asymptotic to a stable density we show that the first passage den- 
sity is also asymptotically stable. Finally when the jump distribution of the ran- 
dom walk has the asymptotic form p(j)~A/IjL ~+ i, 0 < c~ < 2 it is shown that the 
mean first passage time to S goes like S ~. 
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1. I N T R O D U C T I O N  

Let x(t) be a stochastic process that is nondecreasing in time, and let r(x) 
be the first passage time for x to reach level X. It is well known that the 
probability distributions of x(t) and r(x) are related by the identity 

Pr{x(t)  <~ X} = Pr{z(X) ~> t} (1) 

This duality has been used to derive limit theorems for renewal processes (~) 
and can be used to derive many of the known results relating to the 
maximum displacement of random walks on a line. In this note we apply a 
formalism based on Eq. (1) to discuss first passage times for the span of 
symmetric one-dimensional random walks. The span of such a random 
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walk (sometimes referred to as the range) is defined in terms of the 
maximum and minimum displacement Xmax(t) and xmin(t) as 

S(l)=Xmax(t)--Xmin([) (2) 

Clearly s(t) is a nondecreasing stochastic process so that Eq. (2) can be 
applied to derive results related to the earliest times at which s(t) reaches a 
target level that we denote by S. Properties of the span distribution were 
first derived by Daniels (2) and later by Feller (3) and Darling and Siegert. (4) 
Weiss and Rubin (5) extended this analysis to describe properties of the con- 
tinuous time random walk (CTRW). Our current interest in this subject is 
based on the development of first passage time properties of reptating 
chains (6) as a model for the relaxation properties of polymer chains. 

2. G E N E R A L  F O R M A L I S M  

For simplicity we will analyze the span first passage times for random 
walks on a continuous line in discrete time and for CTRW's. One can 
easily develop analogous results for lattice random walks. Let p(s; n) be the 
probability density for the span s, at step n. The probability that s(n) <~ S is 
clearly 

n) = Io p(s; n) ds (3) P(S; 

so that the probability that the first passage time is exactly equal to n is 
P(S; n -  1 ) -  P(S; n). In order to calculate the analogous quantity for the 
CTRW we note that for such a walk the first passage time (for S >  0) must 
coincide with the time at which some step is made. Let 0(t) be the 
probability density for the time between two successive steps and let 0n(t) 
be the probability density for the time at which the nth step is taken. If 
~(u) denotes the Laplace transform of O(t) then the transform of 0n(t) is 
[~(u)] n. One can formally write an expression for the probability density 
of interest as 

O:3 

h(S;t)= Y~ [P(S;n-1)-P(s;n)]~k~(t) ,  S > 0  (4) 
n = l  

The form of this equation suggests that simplification will result if the 
Laplace transform is taken of both sides. If we take note of the fact that 
P(S:0) = 1 when S > 0  then one easily shows that 

fi(s; u) = 6 (u )  - [2 - 6 ( u ) ]  P(s; n) (5) 
n - - 1  

where P(S:n) is defined in Eq. (3). 
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3. A P P R O X I M A T E  R E S U L T S  

The preceding result is exact, no approximations having been made. In 
order to make further progress we need to introduce an approximation for 
p(S:n). Let us first consider random walks for which the variance of dis- 
tance moved in a single step is a2 < o% i.e., is finite. For  such random walks 
it has been shown (s) that the span density can be approximated by 

p(s; n)~-s-Y-j~o s2 - 1 exp - 2s 2 

The integral in Eq. (3) can then be evaluated, leading to the result 

8 co 7"[20"2nq G20"2(aj q- 1 )2hi 
P(S;n)~-~sj~_o[(2jl l)2~---~Jexp[ - 2S 2 

(6) 

(7) 

When this is substituted into Eq. (5) one can readily justify an interchange 
of orders of integration over n and j, allowing us to evaluate the sum over 
n. The result of this calculation is 

1 1 
h(g;u)~tfi(u)--~[1-tfi(u)]~(u),=o s ( 2 j + 1 )  2F j - t f i (u )  

 2o: cj } 
+ 7 

in which 

(8) 

UTc2r~2(2ff+ 1) 2] 
F s = exp L (9) 

Let us now specialize to the case in which the target span, S, is much 
greater than the standard deviation of a single step of the random walk, or, 
so that many steps are required for the span to reach S. In such a case we 
can write 

rc2o2(2j + 1 )2 
Fj~ 1 -[ 2S 2 (10) 

The substitution of this approximation into Eq. (8) allows us to evaluate 
the sum over j exactly (7) with the result that 

(11) 
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When ~(t) has a finite mean, T, this formula together with 
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< ~ ( s ) >  = _ a ~  . =  (12) 
o+ 

allows us to write 
8 2 

( r ( S ) )  = T ( 1  + ~-~--~2) ~TS220.2 (13) 

which is the result that one would expect since ( s ( t ) )~ t  1/2 at large times. 
Let us next consider the case in which the average time between successive 
steps is infinite, and for large times 

t~(t),,~T~/t ~+1, 0 < ~ < 1  (14) 

For this class of pausing time densities it is known that 

~ ( u ) ~  1 - (UZro)~ (15) 

as u ~ 0. If we substitute this into Eq. (11) we find that to lowest order 

~(s ;  u) ~ 1 - (Uro)  ~ 1 + 

~exp I -  (uTo)~ (1 + 2~2) ] (16) 

This form for the Laplace transform allows us to identify the asymptotic 
form (in time) of h(S; t) as a stable law. Specifically, if f~(t) is the stable 
law density of order ~ whose Laplace transform can be written 

A a { f~(t) } = exp( - u =) (17) 

then the last line of Eq. (16) allows us make the identification 

h( S; t)~f~(t/a)/a (18) 

where a is the constant 

a=ro  1+~-~5~2 ) ~To\~---~a2j (t9) 

Thus h(S; t) has the asymptotic form 

h(S; t)~a~/t ~+~ (20) 

at sufficiently large values of t/T o . 
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4.  STABLE LAW J U M P S  

In the cases considered so far we have assumed that the transition 
probabilities were such that the variance for a single step is finite. We con- 
clude by considering the case in which the p(j) themselves have a long tail 
of the form 

p(j)~A/Ijl ~+~, 0<c~<2 (21) 

where A is a positive constant. For such random walks one knows that the 
structure function satisfies 

2(0)= ~ p(j)cosjO~l-10/0ol = (22) 
j ~  --co 

in the limit 0 ~ 0. In this equation the constant 0o can be related to A in 
Eq. (21) by 

2F(1 + c~) sin(tie/2) 
0;  - A (23)  

The span density for such random walks has been found to be (5) given by 

83 -~0 d2[ ( nO='~]l (24) 
p(s;n)~-- ~ exp - O~/]Jlo=(rc(2j+ ))/S 

j 1 

for large OoS. If we denote the exponential appearing in this equation by 
h(O) then the integral appearing in Eq. (3) is 

s oo c s  1 ,, . 

j = o o  3 

=72j_-~o(2j+l)2 l + n ~ L  ~ J J exp nk  0-o-S 

(25)  

One can, as in our earlier analysis, interchange the orders of summation 
over j and n in Eq. (5) and evaluate the sum over n explicitly. Since 
Eq. (24) is only valid when 0oS>> 1 it follows that we can expand the 
exponential in the resulting expression keeping the lowest order term just 



572 Weiss, DiMarzio, and Gaylord 

as in Eq. (10). One finds, in this way, that/~(S; u) can be expressed as the 
s u m  

8 1 ~ 1 [z(S;u)~r ~ (2j+ 1) 2 
j = o  1 -~(u)+n/ 

+ [1 + ~(u) + (2j] 2 (26) 

where 

[-Tz(2j + 1 
O,=  L 0 - ~  !]~ (27) 

On the assumption that the mean time between successive steps of the ran- 
dom walk is a finite constant T the mean first passage time to level S is, in 
this order of approximation, 

8T s 1 
\ 7r / j=o ( 2 j +  1) 2+~ 

(28) 

Further extensions of the theory outlined here are possible. These include 
the development of an exact theory valid for lattice random walks as well 
as a theory that allows both for spatial transitions that have an infinite 
man value and a pausing time density with an infinite mean. These 
generalizations would not seem to have any obvious application, hence we 
do not give them here. 
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